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Abstract

A quite simple, robust and geometrically intuitive method for vari-
ational grid generation can be formulated in terms of separable ex-
presions given as the sum of the values of the evaluation of a convex
injective real funcion, an exponential, that is capable to distinguish in
a structured grid between the convex and non-convex cells, in terms
of its value on each one of the four oriented triangles defined by its
corners, as it is presented in this paper.

1 Admissible grids

First of all, it is convenient to define the basic terminology and def-
initions used throughout this work: the planar regions where we are
interested to solve the variational grid generation problem are the in-
terior of a polygonal simple curve with positive orientation; a typical
region will be denoted as 2.

Let m and n be natural numbers greater then 2, and P be the set
of points where the boundary of a region Q is not C*. An m x n
structured grid for such a region will be the finite set

G={P,|i=1,...mj=1,..n} (1)
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of points in the plane such that
P CQG. (2)

The grids built in this way, holding (2), are told to be admissible.
Naturally, a grid defined as in (1) is convex, if for 1 < i < m and
1 < j < mnthe (m — 1) x (n — 1) quadrilaterals with corners P; j,
P;11,5, P;j+1 and Py ;41 respectively are, each one, convex.

The fundamental fact that allows to generate a sequence of admissi-
ble grids which converges to a convex one is the recognition that a
necessary and sufficient condition for each single cell or quadrilateral
to be convex is that the four triangles within it defined by its corners
have positive oriented area. This has been the main key to propose
several useful expressions in terms of those set of areas, which attain
its minimum values when such values are positive.

So, the first basic quantity associated to a triangle A is twice its ori-
ented area, which will be denoted as a(A) or simple « for brevity.
In terms of a, another two important for a grid G over the region 2
are the minimum o

a(G) = min{a(A)}
and the average
area(Q)
4(m —1)(n—1)
and it is straightforward to see that if

a(G) =

a_(G) >0 (3)

then G is convex.

2 Statement of the problem.

Let us denote as M(2) the set of all admissible grids for the region
Q, and

My ={G € M(Q)]|a_(G) > k}
for a real number k.
Clearly, the set of convex grids for Q is Mp; it should be noted that
for certain values of k it may happen that My = ¢.
In terms of the notation we have introduced and following the moti-
vation of (3), the problem we want to solve can be written as

max{a_(G)} 4)
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and the aim of the present work is to show that this problem can ac-
tually be solved as an unconstrained large-scale optimization problem
in a very easy and robust way by means of a functional of class C*
that makes a strong use of the structural symmetries of the grids.

3 Functionals over M (12).

The typical expression for a functional defined over a grid G is

F(G)=> > > f(Aaf)

i=1 j=1 k=1

which can be written in a shorter way as

F(G)=) (D)= f(B) (5)

AEG

where N = 4(m — 1)(n — 1) is the total number of triangles within
the grid, and f denotes a function of the triangle coordinates.

Several different expressions for f have been proposed, in terms of ge-
ometrical properties we require for the grid as well as considering the
motivation of the direct discretization of some continuous variational
problems related to Poisson kind problems ([5], [9], [10],[11],[12]);
however, convexity can only be guaranteed if the function f expresses
an explicit geometrical compromise with it. Our proposal is based in
the geometrical fact that such a goal can be achieved if f is capable
of distinguish injectively between the triangles with positive and neg-
ative oriented area; after a convenient change of scale, this capacity
will lead the functional to have its optimal values within the set Mj.
One of the simplest smooth expressions with this property is given as

N
F(G)=) e ' (6)

where ¢ is a positive real number that will be used to scale the prob-
lem.
It is immediate to verify that the functional expression

exp(—tag)

indeed distinguishes the right of the wrong triangles, since in the
optimization process, any increment in the value of a will cause an
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increment in the value of the whole sum.

Since the order in the summation in (6) is quite irrelevant, it is natu-
ral to expect non-linear least square solutions which reflect that fact.
In the next sections, it will be demonstrated that after scaling, 6 can
be thought as a straight solution of problem (4).

4 Existence of optimal convex grids.

In order to present the adequate context for the solution we are look-
ing for, let’s identify the values of a of a grid G with a point in
the euclidian space RY, where N is, as before, its total numbers of
triangles. The coordinates z; of these points will satisfy

Z.’L‘i =A (7)

where A is twice the area of Q2 and will represent it hereinafter.

A convex grid will be, in the same way, identified with a point in the
positive "hypercuadrant”. The parameter ¢t of (6) we have already
introduced will be used to change the corresponding level surfaces to
be inside of that positive hypercuadrant if the set of convex grids for
a region is non-empty, and such task will be possible since we know
that the main component of the gradient corresponds to a_. To show
it, let us considerer the following lemmas, that will be presented with-
out proof due to its simplicity.

Lemma 1 Let u be a positive real number. There exists
x0 = (Zo1, %02, " - ,$0N)T e R"
such that

N
Ft(XO) — Ze—twoi =
i=1

Lemma 2 let k be a real number, t a positive real number, and let
us define

Ax = {(z1,22,---,zn) € RV |min(z1, 20, -- zn5) > k}.

Then, the level surface Sz, of the functional

N
§ : e—tm,—
i=1
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passing thru the point
holds that

if the condition

is satisfied.

Since (7) must be satisfied, the definition of the set Ay in the last

lemma makes sense for the search of convex grids if the value of k is

less or equal than %.

Lemma 3 Let k be a real number less or equal than %, t o positive
real number, F; defined as in (6), A, defined as in lemma 2, and P
the plane

P= {(331,-’112,"',23]\])'(61 +z2+---+zxTN = A}
Then, for
X0 = ($01,$02,' v amON)T € Ak NP
erists a value of t such that the set
SxO = {X = (ml,.l'z, T ,mN)T € RN|Ft(xO) = Ft(x)}
satisfies
Sxo C Ag.

It is important to emphasize that ¢ can be seen as a change of pa-
rameter to force the level curves to be inside the set we require, as
well as a change of scale of the original problem to be solved with the

simpler functional
N

F(G)=) e . (8)
q=1
Next, it is easy to show the following results.
Theorem 1 Letk < %, and let us suppose that there exists xo € Mo.
Then, for a value of t large enough the optimization problem
mln{Fg(G)lG € Mk}

has a solution G € My.
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Demonstration: »
Let us denote, for the real number a such that a > Ne™ V|

L, ={x € Pla > Fy(z)}

where
P = {(Qﬂl,mz’...’mN)lml+m2+...+mN ZA},
and
To=AoNP,
with

Ao = {(z1,22,--+,zN) € RN|min(x1,w2, -~ zn) >0}
Let ¢ be such that the level surface
Sa, = {G € RY|F,(Go) = Fi(G)}

satisfies
SGO C Aog.
The intersection
Sa, NP
is non-empty since xo € P, and then
Sao, NP CAoNP =Ty

this is, the level surface of the problem restricted to P is completely
contained in Tp.
It is easy to verify that

SGO n P = 8(LF,;(G’0))
where 0 denotes the boundary of the set, and from here

VG € My \LFt(GO)

we have
Fy(G) > Fy(Go)
and
VG € M\ Lr,(co)
Fi(G) < Fi(Go).
Since

Go € Lr,(cy)
then we have
Go € LFt(Go) N My # ¢.
Finally, Lp,(c,) N My is a closed subset of Lp,(g,) due to the con-
tinuity of Fi, and the conclusion of the theorem follows immediately.00
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Theorem 2 Let Q be a polygonal region of positive oriented area A,
and let be, as before, M () its set of admissible grids and

M, ={G € M(Q)|a_(G) > k}

for a real k real that satisfies

A
k<ﬁ'

If exists Go € Mo(Q2), then the optimization problem
mln{Fg(G)|G € Mk}

has a solution G € Mo when

log N

t> a(Go)"

Demonstration:
Lets denote the coordinates of Go as

Go = (wo1,Z02, -, Ton)"

and so we can write
N
7t .
Ft(Go) = E e ‘roi
i=1

and
a_(Go) = lglan{in}.

From 1 y 2, we know that the level surface of Gy is contained inside
Ay if
' < log F3(Go)

-~ t -

k

Since the function log Fi(Go)
og I't\Go
(t) =~
is increasing because Gy is convex 3, it is sufficient to guarantee 1)(t)
to be positive, which is equivalent to show that there exists a value
of t such that
—log F:(Go) > 0
this is
Fi(Go) < 1. (9)
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To satisfy the last expression, it is just needed to note that
a_(Go) <woi, 1<i<N

and from here
Ft(Go) S Ne_ta_(GO)

and in consequence, a sufficient condition to guarantee 9 is
Ne~te-(G0) <1

which can be written as
log N

t> a_(Go)

(10)

as we wanted.O
It seems necessary to know the components of a convex grid to esti-

mate 10. However, it is not, since we can previously map our region
by

1 T
(.’L‘l,mz,---,.'EN)T = 7(‘7"173"27"';‘%1\7) (11)
a(Go)
where, as before,
Q
&(Go) = are;( )
and this scaled problem will hold
a(Go) =1 (12)

in such a way that since
a_(Go) <a(Go)

we will have for 10

log N

a(Go) > log N.
This is a bound that allows an automatic implementation of the prob-
lem in terms of the dimension of the problem, and since log is a func-
tion that in creases slowly enough, it will not represent any major
problem in the practical implementation for several standard dimen-
sions. In table 1 some typical values are shown for grids with the same
number of horizontal and vertical nodes in the boundary; m stands
for that number of points and N = 4(m — 1)? is the corresponding
associated number of triangles.

t>

184



m N | logN

5 64 | 4.1589
10 | 324 | 5.7807
15 | 784 | 6.6644
20 | 1444 | 7.2752
25 | 2304 | 7.7424
30 | 3364 | 8.1209
35 | 4624 | 8.4390
40 | 6084 | 8.7134
45 | 7744 | 8.9547
50 | 9604 | 9.1699

Table 1: Values of log N.

5 Robustness of Fj.

The parameter k£ in theorem 3 is almost only required to stablish
the definition domain of the optimization problem, to assure that the
set M} is a non-empty set, but this task is done by assuming the
existence of a convex admissible grid; under such hypothesis, many
possible negative values of k can be used.

What this means is that due to the smoothness of the functional 6,
which is defined over the totality of the euclidian space RY, our initial
grid can be any admissible grid, generated for instance for transfinite
interpolation, and taking k as its value of a_, once that the mapping
11 has been done to simplify the computational work required, id est
our proposed method is a robust grid generator.

Its easiness as well as its geometrical compromise with convexity turns
out to be quite evident, and furthermore: it is reflected in the prac-
tical implementation, and as we will see in the next section, in the
possibility of using 6 as a barrier to avoid other functionals to provoke
non-convexity when we used it in convex linear combinations.

6 Combination of functionals.

As discussed in [5], a natural straight way to generate grids that show
several different geometrical properties, as smoothness and orthogo-
nality, is achieved by taking convex linear combinations between the
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functionals that provide them. However, in the general case, con-
vexity will not be guaranteed if none of the functionals used has its
optimal values in convex grids.

The two main requirements for the grids in order to solve differen-
tial kind problems with them are smoothness and orthogonality, but
unfortunately, the corresponding discrete functionals, length

L(G) = (llagll” + Ibg[*) = D 1(A,) (13)

q=1 q=1

and orthogonality

0(G) =) (aghg)” =) o(Ay) (14)

where a and b are two column vectors representing two sides of a
triangle in our formulation and ! and o represent the functional value
of length and orthogonality respectively calculated on it, can be min-
imized by non-convex grids.

To prove that a convex linear combination of 13 or 14 with 6 will also
have its optimal values within the set of the admissible convex grids,
we will considerer another couple of elementary results.

Lemma 4 Let P be the plane

P:{(m1’$2:'-',$1\f)|z1+$2+---+:1}N:A}’

t a positive real numbers and a a real number such that a > Ne™ "
The level surfaces

L, = {x € Pla > Fi(z)}
satisfy:
1. They are non-empty close sets,
2. Ifa <b, then L, C Ly,
3. Vx € P\ L,, Fi(x) > a,
4. The boundary of L, is the set

{x € P|F;(x) = a},
5. They are convex sets, since if

X; = ($11,-",$1N)T,X2 = (w21, - ,$2N)T € L,,
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then for 0 <A <1y l1l<i< N we have
e tORIHI=Ne20) oy omtmii | () _ ) tons
which implies that
Fy(Ax1 + (1 — A)x2) < AFi(x1) + (1 — M) Fi(x2) < a,

6. They are bounded set (and in consequence compacts by 1.), since
must be satisfied and for 1 <i< N

e < Fy(x) < a,

and therefore they are a family of topological (N — 1) spheres.

Theorem 3 Let m be a non-negative real number, and L, is in
lemma 4. Then

1. Ly—m C Lg,
2. ifa—m<Ne_%, then

Lo—m = ¢,

Demonstration:
It is straightforward from

N
Z e % 4t m=a.0O

i=1
And finally, from the lemmas 3 and 2, the theorems 4 and 3 and the
fact that the functionals 13 and 14 are non-negative, we have the next

Theorem 4 Let o be a real number such that 0 < o < 1. If there
erists a conver admissible grid for a region Q, then each one of the
functionals

GF/(G) + (1 —0)L(G) =0 > _fe ' + (1 - a)I(Ag)}

q=1

N
oF,(G)+(1-0)0(G) =0 {e 4+ (1-0)o(A,)}

q=1

has a solution G € Mo for a value of t large enough.
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Again, ¢t large enough has the same meaning that in theorem 4.

The main difficult in the implementation of these combinations yields
on the fact that the magnitude orders of the different functionals can
be very different, so they must be previously normalized with respect
to the values for a standard grid. The typical normalization constants
for orthogonality and length are given as

L
Na?
end
1
2N«
respectively, and for the F; functional we used
1
exp(10.0)

since the upper bound for the product —tz; was estimated as 10.0
following the values of the table 1.
Some of the grids we obtained are presented in the next section.

7 Some results.

Three boundaries with a high degree of complexity were selected:
Great Britain, Russia and Mexico. Each one was approximated with
41 points by side, and in the case of Mexico, the corners were taken
as the geographical limits of the country, the other two choices for
the corners were arbitrary. The initial grids were generated by inter-
polation, next scaled to satisfy 12; the convex grids were generated
with a value of ¢ = 10.0 and o = 0.5.

The respective figures are 1 and 2 for Russia, 3 and 3 for Great Britain
and 5 and 6 for Mexico.

8 Conclusions.

From elementary considerations, and involving the use of the most
classical quantities used in variational grid generation, namely area,
orthogonality and length, it was indeed possible to develop a very
robust method with simple geometrical requirements, thru an ex-
pression of amazing simplicity as (6).
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Figure 1: Grid for Russia, F; — L.

Further analysis and other alternative methods must be developed
and studied, trying now to improve the performance that can be lost
due to the computational difficulties in the calculations regarding ex-
ponential functions, looking for some other convex bounded expres-
sions that can also injectively distinguish the orientation within the
grids as it was done in this work.

Note: A free software for structured grid generation, that includes
this method and other very effective variational approaches is avail-
able on the World Wide Web at the site

http://tycho.feciencias.unam.mz/ “unamalla
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