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Short History of IR
IR = search within doc. coll. for particular info. need (query)

B. C. cave paintings

7-8th cent. A.D. Beowulf

12th cent. A.D. invention of paper, monks in scriptoriums

1450 Gutenberg’s printing press

1700s Franklin’s public libraries

1872 Dewey’s decimal system

Card catalog

1940s-1950s Computer

1960s Salton’s SMART system

1989 Berner-Lee’s WWW



System for the Mechanical Analysis and Retrieval ofText

Gerard Salton

Harvard 1962 – 1965

Cornell 1965 – 1970

• Implemented on IBM 7094 & IBM 360

• Based on matrix methods
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Term–Document Matrices

Start with dictionary of terms

Words or phrases ( e.g., landing gear)

Index Each Document

Humans scour pages and mark key terms

Count fij = # times term i appears in document j

Term–Document Matrix

⎛
⎜⎜⎜⎝

Doc 1 Doc 2 . . . Doc n

Term 1 f11 f12
. . . f1n

Term 2 f21 f22
. . . f2n...

...
...

. . .
...

Term m fm1 fm2
. . . fmn

⎞
⎟⎟⎟⎠ = Am×n
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Query Matching
Query Vector

qT = (q1, q2, . . ., qm) qi =
{

1 if Term i is requested
0 if not

How Close is Query to Each Document?

i.e., how close is q to each column Ai?

1θ

θ2

A1
A2

A3

q

Use δi = cos θi =
qTAi

‖q‖ ‖Ai‖

Rank documents by size of δi

Return Document i to user when δi ≥ tol



Susan Dumais’s Improvement

� Approximate A with a lower rank matrix

� Effect is to compress data in A

• 2 patents for Bell/Telcordia

— Computer information retrieval using latent semantic structure. U.S. Patent No.

4,839,853, June 13, 1989.

— Computerized cross-language document retrieval using latent semantic indexing.

U.S. Patent No. 5,301,109, April 5, 1994.

• LATENT SEMANTIC INDEXING
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Traditional IR
Pros

• Finds hidden connections

• Can be adapted to identify document clusters

— Text mining applications

• Performs well on document collections that are

� Small + Homogeneous + Static
Cons

• Rankings are query dependent

— Rank of each doc is recomputed for each query

• Only semantic content used

— Can be spammed + Link structure ignored

• Difficult to add & delete documents

• Finding optimal compression requires empirical tuning



Trad. IR applied to Web

the pre-1998 Web Index

...

• border patrol: 4; 567; 809; 1103;

...

• hezbollah: 9; 12; 339; 942; 15158;

...

• global warming: 178; 12980; 445532;
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Trad. IR applied to Web

the pre-1998 Web Index

...

• border patrol: 4; 567; 809; 1103; . . . (8,700,000 in total)

...

• hezbollah: 9; 12; 339; 942; 15158; . . . (15,100,000 in total)

...

• global warming: 178; 12980; 445532; . . . (33,200,000 in total)

too many results per search term
easily spammed



Sentiments about the pre-1998 Web
Yahoo

• hierarchies of sites

• organized by humans

Best Search Techniques

• word of mouth

• expert advice

Overall Feeling of Users
• Jorge Luis Borges’ 1941 short story, The Library of Babel

When it was proclaimed that the Library contained all books, the first impression was one

of extravagant happiness. All men felt themselves to be the masters of an intact and

secret treasure. There was no personal or world problem whose eloquent solution did not

exist in some hexagon.

... As was natural, this inordinate hope was followed by an excessive depression. The

certitude that some shelf in some hexagon held precious books and that these precious

books were inaccessible, seemed almost intolerable.



1998: enter Link Analysis

• uses hyperlink structure to focus the relevant set

• combine traditional IR score with popularity score

1998

Page and Brin

Kleinberg



1998 ... enter Link Analysis
Change in User Attitudes about Web Search

Today

• “It’s not my homepage, but it might as well be. I use it to ego-surf. I use it to read

the news. Anytime I want to find out anything, I use it.” - Matt Groening, creator and

executive producer, The Simpsons

• “I can’t imagine life without Google News. Thousands of sources from around the

world ensure anyone with an Internet connection can stay informed. The diversity of

viewpoints available is staggering.” - Michael Powell, chair, Federal Communications

Commission

• “Google is my rapid-response research assistant. On the run-up to a deadline, I may

use it to check the spelling of a foreign name, to acquire an image of a particular

piece of military hardware, to find the exact quote of a public figure, check a stat,

translate a phrase, or research the background of a particular corporation. It’s the

Swiss Army knife of information retrieval.” - Garry Trudeau, cartoonist and creator,

Doonesbury
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Web Information Retrieval
IR before the Web = traditional IR

IR on the Web = web IR

How is the Web different from other document collections?

• It’s huge.
– over 10 billion pages, each about 500KB

– 20 times size of Library of Congress print collection

– Deep Web - 400 X bigger than Surface Web

• It’s dynamic.
– content changes: 40% of pages change in a week, 23% of .com change daily

– size changes: billions of pages added each year

• It’s self-organized.
– no standards, review process, formats

– errors, falsehoods, link rot, and spammers!

• Ah, but it’s hyperlinked !
– Vannevar Bush’s 1945 memex
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The Ranking Module (generates popularity scores)

• Measure the importance of each page

• The measure should be Independent of any query

— Primarily determined by the link structure of the Web

— Tempered by some content considerations

• Compute these measures off-line long before any queries are
processed

• Google’s PageRank c© technology distinguishes it from all com-
petitors

Google’s PageRank = Google’s $$$$$
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How To Measure “Importance”

Landmark Result Paper Survey Paper—Big Bib

Authorities Hubs

• Good hubs point to good authorities

• Good authorities are pointed to by good hubs
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Hypertext Induced Topic Search (1998)

Jon Kleinberg

Determine Authority & Hub Scores

• ai = authority score for Pi

• hi = hub score for Pi

Successive Refinement
• Start with hi = 1 for all pages Pi ⇒ h0 =

⎡
⎢⎢⎣

1
1...
1

⎤
⎥⎥⎦

• Define Authority Scores (on the first pass)

ai =
∑

j:Pj→Pi

hj ⇒ a1 =

⎡
⎢⎢⎣

a1

a2...
an

⎤
⎥⎥⎦ = LTh0

Lij =
{

1 Pi → Pj

0 Pi �→ Pj
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HITS Algorithm
Refine Hub Scores

• hi =
∑

j:Pi→Pj

aj ⇒ h1 = La1 Lij =
{

1 Pi → Pj

0 Pi �→ Pj

Successively Re-refine Authority & Hub Scores

• a1 = LTh0

• h1 = La1

• a2 = LTh1

• h2 = La2

. . .
Combined Iterations

• A = LTL (authority matrix) ak = Aak−1 → e-vector (direction)

• H = LLT (hub matrix) hk = Hhk−1 → e-vector (direction)

!! May not be uniquely defined if A or H is reducible !!
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Compromise

1. Do direct query matching

2. Build neighborhood graph

3. Compute authority & hub scores for just the neighborhood
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Pros & Cons

Advantages

• Returns satisfactory results

— Client gets both authority & hub scores

• Some flexibility for making refinements

Disadvantages

• Too much has to happen while client is waiting

— Custom built neighborhood graph needed for each query

— Two eigenvector computations needed for each query

• Scores can be manipulated by creating artificial hubs



HITS Applied

−→ −→
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The Definition

r(P ) =
∑
P∈BP

r(P )
|P |

BP = {all pages pointing to P}
|P | = number of out links from P

Successive Refinement

Start with r0(Pi) = 1/n for all pages P1, P2, . . ., Pn

Iteratively refine rankings for each page

r1(Pi) =
∑

P∈BPi

r0(P )
|P |

r2(Pi) =
∑

P∈BPi

r1(P )
|P |

. . .

rj+1(Pi) =
∑

P∈BPi

rj(P )
|P |
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In Matrix Notation

After Step k

— πT
k = [rk(P1), rk(P2), . . ., rk(Pn)]

— πT
k+1 = πT

k H where hij =
{

1/|Pi| if i → j

0 otherwise

— PageRank vector = πT = lim
k→∞

πT
k = eigenvector for H

Provided that the limit exists
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� A random walk on the Web Graph

� PageRank = πi = amount of time spent at Pi
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Ranking with a Random Surfer

• Rank each page corresponding to a search term by number
and quality of votes cast for that page.

Hyperlink as vote
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� A random walk on the Web Graph

� PageRank = πi = amount of time spent at Pi

� Dead end page (nothing to click on) — a “dangling node”

� πT = (0,1,0,0,0,0) = e-vector =⇒ Page P2 is a “rank sink”
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Ranking with a Random Surfer

• Rank each page corresponding to a search term by number
and quality of votes cast for that page.

Hyperlink as vote
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— Replace zero rows with eT
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— S = H + a eT

6 is now row stochastic =⇒ ρ(S) = 1

— Perron says ∃ πT ≥ 0 s.t. πT = πTS with
∑

i πi = 1
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— Reducible =⇒ PageRank vector is not well defined

— Frobenius says S needs to be irreducible to ensure a unique
πT > 0 s.t. πT = πTS with

∑
i πi = 1
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Irreducibility Is Not Enough

Could Get Trapped Into A Cycle (Pi → Pj → Pi)

— The powers Sk fail to converge

— πT
k+1 = πT

k S fails to convergence

Convergence Requirement

— Perron–Frobenius requires S to be primitive

— No eigenvalues other than λ = 1 on unit circle

— Frobenius proved S is primitive ⇐⇒ Sk > 0 for some k
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tant pages, which means the random surfer visits it often.

• Simply count the number of times, or proportion of time, the
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The Google Fix
Allow A Random Jump From Any Page

— G = αS + (1 − α)E > 0, E = eeT/n, 0 < α < 1

— G = αH + uvT > 0 u = αa + (1 − α)e, vT = eT/n

— PageRank vector πT = left-hand Perron vector of G

Some Happy Accidents

— xTG = αxTH + βvT Sparse computations with the original link structure

— λ2(G) = α Convergence rate controllable by Google engineers

— vT can be any positive probability vector in G = αH + uvT

— The choice of vT allows for personalization
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'Miserable failure' links to Bush
George W Bush has been Google 
bombed.

Web users entering the words 
"miserable failure" into the popular 
search engine are directed to the 
biography of the president on the 
White House website.

The trick is possible because Google 
searches more than just the 
contents of web pages - it also 
counts how often a site is linked to, 
and with what words.

Thus, members of an online community can affect the results of Google 
searches - called "Google bombing" - by linking their sites to a chosen 
one.

Weblogger Adam Mathes is credited with inventing the practice in 2001, 
when he used it to link the phrase "talentless hack" to a friend's website.

The search engine can be manipulated by a fairly small group of users, 
one report suggested.

Newsday newspaper says as few as 
32 web pages with the words 
"miserable failure" link to the Bush 
biography.

The Bush administration has been 
on the receiving end of pointed 
Google bombs before.

In the run-up to the Iraq war, internet users manipulated Google so the 
phrase "weapons of mass destruction" led to a joke page saying "These 
Weapons of Mass Destruction cannot be displayed."

The site suggests "clicking the regime change button", or "If you are 
George Bush and typed the country's name in the address bar, make 
sure that it is spelled correctly (IRAQ)".

E-mail this to a friend Printable version
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Bush has been the target of similar 
pranks before

If you are George Bush 
and typed the country's 
name in the address bar, 
make sure that it is spelled 
correctly (IRAQ)

Prank website

1/6/04 1:18 PMBBC NEWS | Americas | 'Miserable failure' links to Bush

Page 1 of 1http://news.bbc.co.uk/2/hi/americas/3298443.stm
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Dusty & Yellowing - 
Complaints, compliments, arguments? 

The Blah3 Archives
Email me.

[ ] [ ] [ ]<< "Happy Ramadan, y'all..." Main Index >>"His heart just isn't in it...."

10/27/2003 Archived Entry: "I'm taking part in a new web project..."

I'm taking part in a new web project...

From this day forth, I will refer to George W. Bush as a  at least once a day. Why, you ask? Well, someone came up 
with this great idea to link George W. Bush and  in popular search engines. If you have a blog or web site, help raise 
the link between George W. Bush and the phrase ' ' by copying this link and placing somewhere on your site or blog.

Miserable Failure
Miserable Failure

miserable failure

Thank you very much for your participation.

Replies: 16 people speak up

Great idea!

Posted by  @ 10/27/2003 10:06 PM NYrlrr

That is genius. I could add a few other keywords, like "pathetic". I will post it on my blog now...

Posted by  @ 10/28/2003 02:32 PM NYPolitical Pulpit

Miserable Failure? I'm down with that....

Stay tuned...

Posted by  @ 10/28/2003 02:35 PM NYDrewcifer

Done!

Posted by  @ 10/28/2003 08:46 PM NYMaru

thats great, another thing I think
might be good to use: tax cuts for the wealthy....welfare for the wealthy. just my 2 cents.

Posted by doodaa @ 10/29/2003 03:01 AM NY

Call me a liberal lemming, I guess. ;) I'm in.

Posted by  @ 10/29/2003 09:28 AM NYBJ

The key is stating it in connection with terms that will be widely searched. It does no good to simply say "George Bush is a miserable 
failure" because no one will ever search for that. It might be fun at a parties to show how often the two are in the same sentence in a 
Google search, but otherwise it does little to advance the theme. 

What will work is connecting it to frequent search times, such as "Iraq policy". For instance "George Bush's Iraq Policy is a miserable 
failure." 

The plan shouldn't be to link Miserable Failure to George Bush, but to link Miserable Failure to George Bush and two or three choice, 
frequently searched phrases. 

Overture.com has a keyword suggestion tool that shows how many times certain terms are coming up in searches. Using that tool, I can 
determine that in September the search for "bush george iraq saddam" gets about 12 times more queries than "george bush iraq 
speech". "george bush biography" gets a huge amounts of hits compared to something like "george bush policy". 

So someone needs to write about three complete sentences using these terms based on verfiable search results and including the 
"miserable failure" phrase and then advocate for that exact usage. 

According to Overture, the phrases "george Bush miserable failure" were not queried even once in their sample during the month just 
passed.

Posted by Joe Briefcase @ 10/29/2003 10:51 AM NY

how about drunken, illiterate, mendacious, runt-like miserable failure?

Posted by tim @ 10/29/2003 11:58 AM NY

Hahaha, that's very productive. This is why everyone knows that liberals are stupid. They do stupid things.

Posted by  @ 10/29/2003 12:04 PM NYReek Stankleberry

how about, instead of calling it lies--anyone can lie--how about calling it HORSEFEATHERS AND CODSWALLOP! Pin that on him too.

1/6/04 1:32 PMArchived Weblog Entry - 10/27/2003: "I'm taking part in a new web project..."

Page 1 of 3http://www.blah3.com/graymatter/archives/00000654.html
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Google Search: miserable failure http://www.google.com/search?hl=en&lr=&ie=UTF-8&oe=utf-8&q=...

1 of 2 1/22/04 5:14 PM

Advanced Search    Preferences    Language Tools    Search Tips 

Google Search
 

 Web  Images  Groups  Directory  News 
Searched the web for miserable failure. Results 1 - 10 of about 257,000. Search took 0.08 seconds.
Tip: In most browsers you can just hit the return key instead of clicking on the search button.

Michael Moore.com
Wednesday, January 14th, 2004 I’ll Be Voting For Wesley Clark /
Good-Bye Mr. Bush — by Michael Moore. Many of you have written ... 
Description: Official site of the gadfly of corporations, creator of the film Roger and Me and the television 
show...
Category: Arts > Celebrities > M > Moore, Michael
www.michaelmoore.com/ - 43k - Cached - Similar pages

Biography of President George W. Bush
Home > President > Biography President George W. Bush En Español.
George W. Bush is the 43rd President of the United States. He ... 
Description: Biography of the president from the official White House web site.
Category: Kids and Teens > School Time > ... > Bush, George Walker
www.whitehouse.gov/president/gwbbio.html - 29k - Cached - Similar pages

Biography of Jimmy Carter
Home > History & Tours > Past Presidents > Jimmy Carter. Jimmy Carter.
Jimmy Carter aspired to make Government "competent and compassionate ... 
Description: Short biography from the official White House site.
Category: Society > History > ... > Presidents > Carter, James Earl
www.whitehouse.gov/history/presidents/jc39.html - 36k - Cached - Similar pages

Senator Hillary Rodham Clinton: Online Office Welcome Page
Dear Friend,. Thank you for visiting my on-line office! I appreciate
your interest in the issues before the United States Senate. ... 
Description: Official US Senate web site of Senator Hillary Rodham Clinton (D - NY).
Category: Society > History > ... > First Ladies > Clinton, Hillary
clinton.senate.gov/ - 9k - Cached - Similar pages

BBC NEWS | Americas | 'Miserable failure' links to Bush
'Miserable failure' links to Bush. ... Prank website. Newsday newspaper says as few as
32 web pages with the words "miserable failure" link to the Bush biography. ... 
news.bbc.co.uk/2/hi/americas/3298443.stm - 31k - Cached - Similar pages

Atlantic Unbound | Politics & Prose | 2003.09.24
... Atlantic Unbound | September 24, 2003 Politics & Prose | by Jack Beatty
"A Miserable Failure" Will Bush be re-elected? Only if voters ... 
www.theatlantic.com/unbound/polipro/pp2003-09-24.htm - 22k - Cached - Similar pages

miserable failure | Hillary Clinton | Hildebeest
... Miserable Failure. Quotes for the History Books. ... You may also want to check
out the Miserable Failure Project. and the cuckolded dyke Project. and the ... 
miserable-failure.blogspot.com/ - 60k - Cached - Similar pages

Dick Gephardt for President - Welcome
... to preserve some large part of the Bush tax cut. I think retaining

miserable failure

langville
Highlight

langville
Highlight

langville
Highlight

langville
Highlight

langville
Highlight

langville
Highlight



Google Bomb

G. W. Bush 

Bio webpage

Jim's blog

miserable failuremiserable failure

miserable failuremiserable failure

miserable failuremiserable failure

Kim's blog

Bob's page



Search Issues

Spamming

• Link Farms

• Google Bombs

Personalization

• Google’s psearch, A9, Kartoo



Personalization is Coming



01/23/2007 12:54 PMKartOO visual meta search engine

Page 1 of 1http://www.kartoo.com/flash04.php3



Search Issues

Spamming
• Link Farms

• Google Bombs

Personalization

• Google’s psearch, A9, Kartoo

Privacy

• AOL Data Leak



01/23/2007 01:10 PMA Face Is Exposed for AOL Searcher No. 4417749 - New York Times

Page 1 of 3http://www.nytimes.com/2006/08/09/technology/09aol.html?ex=1312776000&en=f6f61949c6da4d38&ei=5090

Erik S. Lesser  for The New York Times

Thelma Arnold's identity was betrayed
by AOL records of her Web searches,
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clearly has a problem.
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A Face Is Exposed for AOL Searcher No. 4417749
By MICHAEL BARBARO and TOM ZELLER Jr.
Published: August 9, 2006

Buried in a list of 20 million Web search queries collected by AOL

and recently released on the Internet is user No. 4417749. The

number was assigned by the company to protect the searcher’s

anonymity, but it was not much of a shield.

No. 4417749 conducted hundreds of

searches over a three-month period on

topics ranging from “numb fingers” to 

“60 single men” to “dog that urinates

on everything.”

And search by search, click by click, the identity of AOL

user No. 4417749 became easier to discern. There are

queries for “landscapers in Lilburn, Ga,” several people

with the last name Arnold and “homes sold in shadow

lake subdivision gwinnett county georgia.”

It did not take much investigating to follow that data trail

to Thelma Arnold, a 62-year-old widow who lives in

Lilburn, Ga., frequently researches her friends’ medical

ailments and loves her three dogs. “Those are my

searches,” she said, after a reporter read part of the list to

her.

AOL removed the search data from its site over the

weekend and apologized for its release, saying it was an

unauthorized move by a team that had hoped it would

benefit academic researchers.

But the detailed records of searches conducted by Ms. Arnold and 657,000 other

Americans, copies of which continue to circulate online, underscore how much people

unintentionally reveal about themselves when they use search engines — and how risky it

can be for companies like AOL, Google and Yahoo to compile such data.

Those risks have long pitted privacy advocates against online marketers and other

Internet companies seeking to profit from the Internet’s unique ability to track the

comings and goings of users, allowing for more focused and therefore more lucrative

advertising.

But the unintended consequences of all that data being compiled, stored and cross-

linked are what Marc Rotenberg, the executive director of the Electronic Privacy

Information Center, a privacy rights group in Washington, called “a ticking privacy time

bomb.”

Mr. Rotenberg pointed to Google’s own joust earlier this year with the Justice

Department over a subpoena for some of its search data. The company successfully
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Department over a subpoena for some of its search data. The company successfully

fended off the agency’s demand in court, but several other search companies, including

AOL, complied. The Justice Department sought the information to help it defend a

challenge to a law that is meant to shield children from sexually explicit material.

“We supported Google at the time,” Mr. Rotenberg said, “but we also said that it was a

mistake for Google to be saving so much information because it creates a risk.”

Ms. Arnold, who agreed to discuss her searches with a reporter, said she was shocked to

hear that AOL had saved and published three months’ worth of them. “My goodness, it’s

my whole personal life,” she said. “I had no idea somebody was looking over my

shoulder.”

In the privacy of her four-bedroom home, Ms. Arnold searched for the answers to scores

of life’s questions, big and small. How could she buy “school supplies for Iraq children”?

What is the “safest place to live”? What is “the best season to visit Italy”?

Her searches are a catalog of intentions, curiosity, anxieties and quotidian questions.

There was the day in May, for example, when she typed in “termites,” then “tea for good

health” then “mature living,” all within a few hours.

Her queries mirror millions of those captured in AOL’s database, which reveal the

concerns of expectant mothers, cancer patients, college students and music lovers. User

No. 2178 searches for “foods to avoid when breast feeding.” No. 3482401 seeks guidance

on “calorie counting.” No. 3483689 searches for the songs “Time After Time” and “Wind

Beneath My Wings.”

At times, the searches appear to betray intimate emotions and personal dilemmas. No.

3505202 asks about “depression and medical leave.” No. 7268042 types “fear that

spouse contemplating cheating.”

There are also many thousands of sexual queries, along with searches about “child

porno” and “how to kill oneself by natural gas” that raise questions about what legal

authorities can and should do with such information.

But while these searches can tell the casual observer — or the sociologist or the marketer

— much about the person who typed them, they can also prove highly misleading.

At first glace, it might appear that Ms. Arnold fears she is suffering from a wide range of

ailments. Her search history includes “hand tremors,” “nicotine effects on the body,” “dry

mouth” and “bipolar.” But in an interview, Ms. Arnold said she routinely researched

medical conditions for her friends to assuage their anxieties. Explaining her queries

about nicotine, for example, she said: “I have a friend who needs to quit smoking and I

want to help her do it.”
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Saul Hansell contributed reporting for this article.
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