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Pairing-Based Cryptography
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Symmetric bilinear pairings

I (G,+), (GT , ·), cyclic groups of prime order |G| = |GT | = r .

I A symmetric bilinear pairing on (G,GT ) is a mapping

ê : G×G→ GT ,

such that

ê(P,P) 6= 1 for P 6= 0G,

ê(Q1 + Q2,R) = ê(Q1,R) · ê(Q2,R),

ê(Q,R1 + R2) = ê(Q,R1) · ê(Q,R2).

For cryptographic purpose, we want ê to be efficiently computable.

I Immediate property: for any integer k ,

ê(kQ,R) = ê(Q,R)k = ê(Q, kR).
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I Immediate property: for any integer k ,
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Examples of pairing-based protocols

I Identity-based non-interactive key exchange
Sakai-Oghishi-Kasahara, 2000.

I One-round three-party key agreement
Joux, 2000.

I Identity-based encryption
Boneh–Franklin, 2001.
Sakai–Kasahara, 2001.

I Short digital signatures
Boneh–Lynn–Shacham, 2001.
Zang–Safavi-Naini–Susilo, 2004.
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Small-Characteristic Pairings

Gora Adj (Cinvestav) The end of paring-based crypto Seminario Comp. Cientif́ıca 3 / 22



Small-characteristic pairing-based cryptography

In these parings, we have ê : G×G→ GT , where:

I G is a subgroup of prime order r of either

E (Fpn), the group of rational points of an elliptic curve E ; or

JacC (Fpn), the jacobian of a genus-2 hyperelliptic curve C .

[p = 2, 3 and n is a prime.]

I GT is the subgroup of order r of F∗
pkn

,

k is the embedding degree of G, that is the smallest positive
integer k such that r |(pkn − 1).

Most common pairing maps:

I Weil pairings.

I Tate pairings and modifications (Eta, Ate, ...).
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Primary small-characteristic pairings

The most interesting small-characteristic:

I The k = 4 pairings derived from supersingular elliptic curves over F2n :

Y 2 + Y = X 3 + X ; and

Y 2 + Y = X 3 + X + 1.

I The k = 6 pairings derived from supersingular elliptic curves over F3n :

Y 2 = X 3 − X + 1; and

Y 2 = X 3 − X − 1.

I The k = 12 pairing derived from supersingular gen.-2 curves over F2n :

Y 2 + Y = X 5 + X 3; and

Y 2 + Y = X 5 + X 3 + 1.
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Security of Small-Characteristic Pairings

(Prior to 2013)
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Discrete logarithm problem (ECDLP, DLP)

I Let (G,+) be a subgroup of prime order r of an elliptic or hyperelliptic
curve and let P ∈ G.

P

k

kP

ECDLP: given Q ∈ G, compute 0 ≤ k < r such that Q = kP.

kQ = P

k

I Let (GT , ·) be a subgroup of order r in a finite field. Let g ∈ GT .

GT = {g i : 0 ≤ i < r}.

DLP: given h ∈ GT , find 0 ≤ i < r such that h = g i .
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The MOV attack

The ECDLP is known to be hard.

I The best general-purpose algorithm is of complexity exponential.

However, efficient problem reductions exist:

I Menezes-Okamoto-Vanstone (1993), Frey-Rück (1994)

ECDLPG <Polynomial time DLPGT

dP −→ ê(dP,P) = ê(P,P)d .

I Then the DLP in Fqk is also required to be hard.

I For pairing-based cryptography over supersingular curves:

The embedding degree is relatively small (k = 4, 6, or 12).

So, the finite field Fqk (containing GT ) is not very large.
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I Then the DLP in Fqk is also required to be hard.

I For pairing-based cryptography over supersingular curves:

The embedding degree is relatively small (k = 4, 6, or 12).

So, the finite field Fqk (containing GT ) is not very large.

Gora Adj (Cinvestav) The end of paring-based crypto Seminario Comp. Cientif́ıca 7 / 22



The MOV attack

The ECDLP is known to be hard.

I The best general-purpose algorithm is of complexity exponential.

However, efficient problem reductions exist:

I Menezes-Okamoto-Vanstone (1993), Frey-Rück (1994)

ECDLPG <Polynomial time DLPGT
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DLP algorithms for small-characteristic fields FQ

I Subexponential running time, for 0 < α < 1 and c > 0, at input Q:

LQ [α, c] = e [c+o(1)](log Q)α(log log Q)1−α
= (logQ)

[c+o(1)]
(

log Q
log log Q

)α
.

I Coppersmith’s algorithm [Coppersmith84] of complexity LQ [ 1
3 , 1.526]

is the fastest general-purpose algorithm for solving the DLP in FQ :

Table: Security of small-characteristic parings as in 2012 (DLP in Fpkn)

Underlying field (Fpn) F2n F3n F2n

Embedding degree (k) 4 6 12

Lower security (≈ 264) n = 239 n = 97 n = 127

Medium security (≈ 280) n = 373 n = 163 n = 163

Standard security (≈ 2128) n = 1223 n = 509 n = 367

Higher security (≈ 2192) n = 3041 n = 1429 n ≈ 983
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Joux-Lercier algorithm for FQ = Fqn

I In 2006, Joux and Lercier [JL06] presented an algorithm with running

time LQ [ 1
3 , 1.442] when q and n are ‘balanced’

q = LQ [1/3, 3−2/3], n = 32/3 · (logQ/(log logQ))2/3 .

I In 2012, Shinohara et al. [SSHT12]

analyzed the [JL06] algorithm to estimate:

Extension Field F36·n n = 97 n = 163 n = 509

Security level 252.79 268.17 2111.35

solved the DLP in the field F36·97 in 103.74 CPU years.

I Later in 2012, Joux [Joux12] introduced a technique that improved

the [JL06] algorithm to LQ [ 1
3 , 0.961].
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2013’s advances

Let Q = qdn, with q a power of 2 or 3, n ≈ q and d a small integer

I Feb, May 2013 - Joux [Joux13]:

presented an algorithm of complexity LQ [ 1
4 + o(1), c].

solved the DLP in F∗26168 = F∗(28)3·257 in 550 CPU hours.

I Feb, Apr 2013 - Göloğlu-Granger-McGuire-Zumbrägel:

presented ideas somewhat similar to Joux’s.

solved DLP in F∗26120 = F∗(28)3·255 in 750 CPU hours.

I Jun 2013 - Barbulescu-Gaudry-Joux-Thomé:

Quasi-polynomial time algorithm (QPA) when d = 2:

(logQ)O(log log Q) ≈ (LQ [−1, c])(log Q).

Asymptotically smaller than LQ [α, c], for any α > 0 and c > 0.
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I Feb, Apr 2013 - Göloğlu-Granger-McGuire-Zumbrägel:
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Cryptographic impact

2013-2014, A.-Menezes-Oliveira-Rodŕıguez

I We combined Joux’s algorithm and the QPA to show that the DLP in the
cryptographic field F36·509 can be computed much faster than previously:

275 operations vs. 2128 for Coppersmith.

I We also analyzed the cryptographic DLP in the field F212·367 and found the
new algorithms more effective than previously:

295 operations effectively parallelizable vs. 292 for Joux 2012.

I We used Granger-Zumbrägel’s field representation (ECC 2013) to:

show that the DLP in cryptographic fields F36·1429 and F24·3041 can be
solved in time 296 and 2129, respectively, vs. 2192 for Coppersmith.

solve the DLP in the 155 and 259-bit prime subgroups of F∗36·137 and
F∗36·137 within 888 and 1201 CPU hours, respectively.
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I We used Granger-Zumbrägel’s field representation (ECC 2013) to:

show that the DLP in cryptographic fields F36·1429 and F24·3041 can be
solved in time 296 and 2129, respectively, vs. 2192 for Coppersmith.

solve the DLP in the 155 and 259-bit prime subgroups of F∗36·137 and
F∗36·137 within 888 and 1201 CPU hours, respectively.

Gora Adj (Cinvestav) The end of paring-based crypto Seminario Comp. Cientif́ıca 11 / 22



Cryptographic impact

2013-2014, A.-Menezes-Oliveira-Rodŕıguez
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Overview on the Joux’ algorithm: DLP in Fqdn

I Select polynomials h0, h1 ∈ Fqd [X ] such that

degree of h0 and h1 is at most 2, a small positive integer.

X q · h1 − h0 has a degree-n irreducible factor IX in Fqd [X ].

Remark: Fqdn = Fqd [X ]/(IX ) and elements are seen as polynomials in
Fqd [X ] of degree at most n − 1.

I Let g ∈ F∗
qdn

(a linear) be a generator, and h ∈ F∗
qdn

a target element.

I Factor base computation: find logarithms of all degree-1 elements
(and degree-2 if d = 2) in Fqdn in polynomial time.

I Descent stage: logg h is expressed as a linear combination of logs of
elements in the factor base using classical methods and a new descent
method (based on solving multivariate bilinear equations).
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The idea behind the descent stage

I Let f ∈ Fqd [X ] irreducible of degree D.

I Let (fi )i∈I and (hi )j∈J be two families of polynomials in Fqd [X ] of
degree at most m < D and (αi )i∈I and (βi )j∈J two families of
positive integers such that

f ·
∏
i∈I

f αi
i =

∏
j∈J

hβii .

I Then

logg f =

∑
j∈J

αi · logg hi

−(∑
i∈I

βi · logg fi

)
.

I In this case, we say that we expressed logg f as a linear combination
of logarithms of polynomials of degree at most m.
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DLP in F36·137: q = 34, d = 3 and n = 137
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Gröbner
Basis

X + . . . X + . . .. . . X + . . . X + . . .. . .. . .

2-to-1
Descent

Gora Adj (Cinvestav) The end of paring-based crypto Seminario Comp. Cientif́ıca 14 / 22



DLP in F36·137: q = 34, d = 3 and n = 137

X 136 + . . .

X 68 + . . . X 68 + . . .

X 12 + . . . X + . . .. . . X13 + . . . X + . . .. . .

Continued-
Fraction

X 5 + . . . X + . . .. . . X5 + . . . X + . . .. . .. . .

Classical
Descent

X 2 + . . . X + . . .. . . X2 + . . . X + . . .. . .. . .
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More Improvements
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Practical improvements

January 30 2014, Granger-Kleinjung-Zumbrägel [GKZ14]: F212·367

I Not necessary to embed Fqn into larger extensions whenever q ≈ δ · n,
for some small integer δ.

I Discrete logarithm computation in the cryptographic subgroup of F212·367

in 52,240 CPU hours.

September 15 2014, Joux and Pierrot [JP14]: F35·479 .

I Compute the logarithms of degree-1 and degree-2 elements by solving one
linear algebra in time O(q5).

I Compute the logarithms of degree-3 elements and a degree-4 family
elements by solving q linear algebras for each in time O(q6) and the
logarithms of some other degree-4 families of smaller size.

I Discrete logarithm computation in F35·479 within 8,600 CPU hours.
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I Not necessary to embed Fqn into larger extensions whenever q ≈ δ · n,
for some small integer δ.

I Discrete logarithm computation in the cryptographic subgroup of F212·367

in 52,240 CPU hours.

September 15 2014, Joux and Pierrot [JP14]: F35·479 .

I Compute the logarithms of degree-1 and degree-2 elements by solving one
linear algebra in time O(q5).

I Compute the logarithms of degree-3 elements and a degree-4 family
elements by solving q linear algebras for each in time O(q6) and the
logarithms of some other degree-4 families of smaller size.

I Discrete logarithm computation in F35·479 within 8,600 CPU hours.

Gora Adj (Cinvestav) The end of paring-based crypto Seminario Comp. Cientif́ıca 15 / 22



Practical improvements

January 30 2014, Granger-Kleinjung-Zumbrägel [GKZ14]: F212·367
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The 509’s Computations
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Latest computations on F36·509

July 18 2016, A.-Canales-Cruz-Menezes-Oliveira-Rivera-Rodŕıguez

I Let E : y2 = x3 − x + 1 be the supersingular elliptic curve over F3509 with
|E (F3509 )| = 7r , where r = (3509 − 3255 + 1)/7 is a 804-bit prime.

I We solved the DLP in the order-r subgroup of the 4404-bit field F∗36·509 ,
initially proposed for 128-bit security.

I We used the Joux-Pierrot method to compute the logarithms of elements
of the factor base, i.e., the elements of degree at most 3 and a portion of
29/728 of the quartic elements.

I To write the logarithm of a 508-degree target in terms of elements of degree
≤ 15, we employed the continued-fractions and classical descent methods.

I We used Granger-Kleinjung-Zumbrägel’s techniques to have the logarithms
of elements of degree ≤ 15 written in terms of logarithms of elements in the
factor base.
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Running-time

Computation stage CPU time (years) CPU frequency (GHz)

Finding logarithms of quadratic polynomials

Relation generation 0.01 (CS Dept.) 3.20

Linear algebra 0.50 (CS Dept.) 2.40

Finding logarithms of cubic polynomials

Relation generation 0.15 (CS Dept.) 3.20

Linear algebra 43.88 (ABACUS) 2.60

Finding logarithms of quartic polynomials

Relation generation 4.07 (CS Dept.) 2.60

Linear algebra 96.02 (ABACUS) 2.60

Descent

Continued-fractions (254 to 40) 51.71 (CS Dept.) 2.87

Classical (40 to 21) 9.99 (CS Dept., U Wat.) 2.66

Classical (21 to 15) 10.24 (CS Dept., U Wat.) 2.66

Gröbner bases (15 to 4) 6.27 (CS Dept., U Wat.) 3.00

Total CPU time (years) 222.81

Table: CPU times of each stage of the discrete logarithm computation in F36·509 .
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Experienced problems

I Main issues:

We used Magma’s implementation of Faugère’s F4 algorithm.

Our Magma script for the descent phase very frequently needs to read
the logarithms of quartic polynomials, of total size 618 GB.

But our machines have only 256 GB of RAM. Thus, most of the
logarithms must be stored in the hard drive HD (much slower than the
virtual memory VM). In addition, binary encoding occupies less space
but Magma does not fully handle binary files.

Moreover, since many copies of the Magma code should be executed in
parallel, the memory accesses quickly cause traffic congestions.

I Our fixes:

We filled the VM with logarithms in hexadecimal encoding and the rest
of the logarithms are stored in the HD in binary encoding.

Logarithms in the VM are read by Magma and those in the HD from
some C-codes called from Magma. The System V shared memory is
used for the Magma-C for the interprocess communication.
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DLP at The 192-bit Security Level
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Guillevic’s descent method (July 2016)

I Let q = 36, n a prime number and r a prime divisor of Φ6(3n), where Φ6(X )
is 6th cyclotomic polynomial.

I Let g be a generator of F∗36·n and h a target element of degree n − 1.

I Guillevic showed that one can expect to find two elements h′ ∈ F∗36·n and
v ∈ F ∗33n , with h′ of degree n−1

2 ≤ n′ ≤ n − 1, such that h′ = hv . Then

logg h
′ ≡ logg h (mod r).

I Elements h′ and v are found by solving a 6(n − n′)× 3n linear algebra
problem at a small cost.

I For a successful (n − 1)-to-m descent, several h′ should be obtained and
tested for m-smoothness.

I In our case, we choose n′ so that 36n′−3n � qn
′
/Nq(m, n′), where Nq(m, n′)

denotes the number of monic m-smooth degree-n′ polynomials in Fq[X ].
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Discrete logarithms in F36·1429

I E : Y 2 = X 3 − X − 1 a supersingular elliptic curve over F3. |E (F31429 )| = cr ,
where c = 7622150170693 and r = (31429 − 3715 + 1)/c , a 2223-bit prime.

I The Weil and Tate pairings can be used to embed the order-r subgroup of
E (F31429 ) in the multiplicative group of the 13590-bit field F36·1429 .

I For g a generator of F∗36·1429 and h a target of degree 1428, we estimated the
cost of finding x = logg h mod r at 263.4Mq.

Finding logarithms of quadratic polynomials

Degree 1 and 2 250.7

Degree 3 256.9

Degree 4 (36/728) 256.3

Descent

Guillevic (1428 to 71) 262.4

Classical (71 to 32) 261.8

Classical (31 to {1, . . . , 16, 18, 20, 22, 24, 28, 32}) 259.2

Small degree ({5, . . . , 16, 18, 20, 22, 24, 28, 32} to 4) 260.0

Total cost 263.4

Table: Estimated costs of the main steps for computing discrete logarithms in
F36·1429 .
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Feasibility of computing discrete logarithms in F36·1429

I We assume that we have access to a 9000-core cluster A, where each core
has access to 16 gigabytes of shared RAM, such as ABACUS-Cinvestav.

I In addition, we assume that we have access to a 1500-core cluster B, where
each core has access to 1 terabytes of shared RAM.

I We further assume that each core can execute 227Mq per second.

Computation Cluster # cores # days

Degree-3 A 5824 2

Degree-4 A 9000 1

Guillevic descent A 9000 59

First classical descent A 9000 39

Second classical descent A 9000 7

Small degree descent B 1500 65

Total time 173

Table: Estimated calendar time for computing discrete logarithms in F36·1429

using clusters A and B.
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Open problem

Since the effort in the previous slide is still beyond the reach of the
computer resources available to us, it would be worthwhile to improve
the descent strategy.

Muchas Gracias
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The continued-fraction descent

Recall that we want to compute logg h and assume that n is odd and
deg h = n − 1.

For a chosen m < n− 1, we want to express logg h as a linear combination
of logarithms of polynomials of degree at most m.

I (1) Multiply h by a random power of g to get h′ = g i ∗ h.

I (2) Use the extended Euclidean algorithm to express h′ in the form

w2 · h′ + v · IX = w1 where degw1 = degw2 =
n − 1

2
.

Repeat (1)-(2) until w1 and w2 are m-smooth.

In F36·137 , for m = 13, the total running time of the continued-fraction step
is 22 CPU hours.
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The Gröbner bases descent

Let f ∈ Fqd [X ] of degree D, and let m = d(D + 1)/2e.

We want 2 polynomials k1 and k2 ∈ Fqd [X ] of degree d such that f | G ,

where G = k1k̃2 − k̃1k2 (mod IX ),

with k̃i (X ) = h
m
1 · k i

(
h0

h1

)
and k̃i (X ) = h

m
1 · k i

(
h0

h1

)
.

We then have

Gq ≡ h
mq
1 · k2 ·

∏
λ∈Fq

(k1 − λk2) (mod IX ).

as can be seen by making the substitution Y 7→ k1/k2 into the systematic
equation Y q − Y =

∏
λ∈Fq

(Y − λ) and clearing denominators.

If 3m < n, then G = k1k̃2 − k̃1k2, since k1k̃2 − k̃1k2 has degree 3m and
so G (X ) = f (X )R(X ) for some R ∈ Fqd [X ] with degR = 3m − D.
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