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Abstract In some problems, the solutions of partial differential equations
use parametrizations of plane regions. However, it is difficult to get suitable
parametrizations of irregular regions. In this paper we introduce a method for
finding a parametrization of a polygonal region �. Our method decomposes � into
a finite collection of admissible subregions. We use compatible parametrizations of
these subregions to construct the parametrization of � as a block structured mesh.

1 Introduction

The parametrizations of irregular regions have many applications in Computer
Aided Design, Engineering Modeling, and Shape Recognition [15]. The Finite
Element Analysis and the Isogeometric Analysis use parametrizations of plane
regions to solve partial differential equations [10].

Our UNAMALLA workgroup has generated bilinear and biquadratic B-splines
parametrizations of simply connected regions using structured mesh generation [1,
2]. Nevertheless, some cells are elongated or skewed on highly irregular regions.
This limitation can be overcome by splitting the region into subregions suitable for
parametrization.

The problem we address is to decompose polygonal regions into admissible
subregions and generate compatible parametrizations of these subregions. We want
a method to solve this problem.

Researchers in Computer Aided Design have developed some methods for
constructing compatible parametrizations of 2D regions. In that regard, Xu G. et
al. [18, 19] have constructed high quality parametrizations by solving constrained
optimization problems. Even so the overall process is computationally expensive
for irregular regions.
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On the other hand, admissible subregions and their compatible parametrizations
can be efficiently constructed by automatic methods of block structured mesh
generation. Zint et al. [21] use triangulations for region decomposition, so the block
connectivity depends on the triangulation. Bommes et al. [6] use the singularities of
a cross-field to construct a family of parametrizations between coarse quad layouts
of surfaces. Nevertheless, as the number of singularities increases, the number
of layouts also increases. Recently, Xiao et al. [17] use the singular points of a
cross-field to generate high quality structured meshes with smooth lines between the
subregions. However, they provide examples in which the geometry is not irregular.
On the other hand, Zhang et al. [20] decompose a polygonal region into a main
block with multiple subregions organized in a hierarchy structure. Mesh generation
is automatically carried out block by block from the main root block to the highest
level. This method is not easy to extend to multiply-connected regions.

In this paper we propose a method to find both admissible subregions and
their compatible parametrizations. Our method consists of two stages: region
decomposition and parametrization construction.

Motivated by Liu et al.[13], we propose in Sect. 2 an interactive region decom-
position method to obtain admissible subregions. In Sect. 3 the parametrization
construction is carried out from the boundary to the interior of the subregions.
First, the subregion boundaries are approximated by compatible B-splines curves
in Sect. 3.1. Then, these curves are extended into the whole region by structured
mesh generation in Sect. 3.2. Finally, we summarize the main steps of our method
and show some examples to illustrate its robustness in Sect. 4.

2 Region Decomposition

Region decomposition is a fundamental step in our method. Let � be a a counter-
clockwise oriented polygonal region. We decompose � into non-overlapping
admissible polygons. A polygonal region is admissible if it has a parametrization
such that its cells are rectangle-like quadrilaterals.

The key point of our region decomposition is the concavity. Lien [12] decom-
poses recursively a polygon into approximate convex polygons. He introduces
concavity criteria to decompose polygons. Later, Liu et al. [13] proposed the Dual-
space Decomposition (DUDE) to split polygons using their convex complements.

2.1 Concavity Measures and Admissible Regions

We use some concepts introduced in Lien [12] and Liu et al. [13] to measure the
concavity of �. Let H(�) be the convex hull of �. The convex complement
of � is H(�) \ �. The bridges of � are line segments contained in the convex
complement of � which join two points in ∂�. Each bridge β has a pocket ρ, that
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Fig. 1 Convex complement of the region Gulf and some of its bridges and pockets. The red
point has the largest concavity in the corresponding pocket

is, the polygonal curve of ∂� with the smallest length which joins the ending points
of β (Fig. 1).

We measure the concavity of pocket points and bridges. Let β be a bridge of �

with pocket ρ. The concavity of a point x of ρ is the distance from x to β. This
distance is the straight line distance to β or the arc length of the polygonal curve in
ρ which joins x with the nearest ending point of β.

The concavity of a bridge is the largest concavity of its pockets points. We
measure the concavity of the bridges using the straight line distance to the bridges.
The largest concavity of the bridges of � is denoted by c1(�). The region � is
scaled inside a circle of radius one centered at the centroid of � so that c1(�) be
scale independent.

In addition to the concavity measures in [12, 13], we introduce the concavity
measure

c2(�) := Area(H(�)) − Area(�)

Area(H(�))
. (1)

This is the relative size of region with respect to its convex hull.
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Regions with small concavity measures are suitable for parametrization, so we
want subregions of � that satisfy the following concavity criteria:

• 1° concavity criterion: The concavity of the bridges of � is small.

c1(�) ≤ τ1, τ1 ∈ (0, 1). (2)

• 2° concavity criterion: The area difference between the region and its convex
hull is small.

c2(�) ≤ τ2, τ2 ∈ (0, 1). (3)

Regions which satisfy both concavity criteria are admissible regions. So convex
regions are admissible. On the other hand, non-convex regions which do not
satisfy the previous criteria are decomposed into admissible subregions. We want
an admissible decomposition of �, that is, a collection {�k}nk=1 of polygonal
subregions of � such that

1. � = ∪n
k=1�k .

2. �i ∩ �j �= ∅ �⇒ �i ∩ �j ⊂ ∂�i ∩ ∂�j ∀i, j .
3. Each �k satisfies both concavity criteria (2)–(3).

2.2 Decomposition Method

Our decomposition method is interactive. It uses some ideas of DUDE [13]. The
region � is recursively split into two subregions �1 and �2 by a cut when � does
not satisfy the concavity criteria (2)–(3) (Fig. 2).

A cut of � is a line segment in the interior of � which joins two points of ∂�.
We make a cut in each step of our method. However, not just any cut separates �

into admissible subregions. We propose an interactive cut choice method based on
concavity measures. It consist of the following steps:

1. Compute the convex hull H(�)

2. Find the pockets of � with ending points in the boundary of H(�). Select the
pockets such that their union with the corresponding bridges have large area.

3. In each pocket compute the concavity of their points using either the straight line
distance or the arc length. Select a point x1 with large concavity in a pocket ρ1
as an ending point of the cut.

4. Select a point x2 with large concavity in a pocket different from ρ1 such that the
segment x1x2 is a cut, else choose x2 as an intersection point of ∂� with the
line P perpendicular to the bridge of ρ1 which passes at x1. Otherwise choose
x2 ∈ ∂� \ ρ1 with the smallest straight line distance to x1 such that the segment
x1x2 does not cross previous cuts of � (Fig. 3).

The segment x1x2 is the chosen cut of �.
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Fig. 2 The decomposition process of the region Gulf. The cuts are colored in each step and the
subregions are labeled by 1–2 tuples to indicate a binary tree structure

(a) (b)

Fig. 3 Choices for a cut x1x2 in our region decomposition method. (a) Pocket points x1 and
x2 with large concavity in different pockets. (b) A pocket point x1 with large concavity and the
intersection x2 of ∂� and the line P



268 P. Barrera and I. Méndez

Our region decomposition method is shown in Algorithm 1. We interactively
choose suitable cuts in each step. These cuts does not necessarily connect two
pockets. On the other hand, the DUDE method joins points with large concavity
measure and automatically selects the cuts using a triangulation.

Algorithm 1 Region decomposition method
procedure DECOMPOSITION(�)

if � satisfies both concavity criteria (2)–(3) then
return �

else
x1x2 ← Cut Choice Method(�)

split � into �1 and �2 using the cut x1x2
Decomposition(�1)
Decomposition(�2)

end if
end procedure

3 Parametrization Construction

Our next task is to find compatible parametrizations of admissible subregions.
Any two parametrizations of different subregions are compatible if they have the
same points on the intersection. First, we generate compatible parametrizations
of the boundaries. Then, we extend these parametrizations into the interior of the
subregions.

3.1 Compatible Parametrizations of the Boundaries

Let {�k}nk=1 be an admissible decomposition of �. We want to parametrize ∂�k on
the boundary of R = [0, 1]× [0, 1]. To that end, we split ∂�k into four consecutive
polygonal curves �k,bottom,�k,right, �k,top and �k,left delimited by four points of
∂�k. The polygonal curves�k,bottom and �k,top are opposite boundaries of �k . The
same applies for �k,right and �k,left.

Since the subregions �k are admissible, we can manually choose four points of
∂�k such that their interior angles are less than 180° and the opposite boundaries
have approximately the same length. Zhang et al. [20] propose another choice for
the four points.

We identify the decomposition cuts of � in the four boundary curves of each
suregion, then we split each one of polygonal curves �k,bottom,�k,right, �k,top and
�k,left into consecutive polygonal sections which are either cuts of � or maximal
polygonal curves contained in ∂�. We enumerate these polygonal sections starting
with �k,bottom, then the sections in �k,right and �k,top, and finally those in �k,left
for k = 1, . . . , n. These sections form a polygonal decomposition {Qp}sp=1 of
∪n

k=1∂�k (Fig. 4).
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Fig. 4 The region � is split into �1,�2 and �3. We split ∂�1 ∪ ∂�2 ∪ ∂�3 into 17 polygonal
sections Qp . The sections Q2,Q7,Q11 and Q17 are cuts of � while the other sections are
contained in ∂�. The boundary curve �2,right is split into three sections while �3,left is split
into two sections

Fig. 5 The sections of the boundaries in Fig. 4 are reparametrized as polygonal curves �p and the
four boundary curves of each subregion are reparametrized as �k,b, �k,r , �k,t and �k,l

Each polygonal section Qp is reparametrized with respect to arc-length as a
polygonal curve �p with equidistant points. We join the sections �p to obtain
reparametrizations of �k,bottom, �k,right, �k,top and �k,left denoted by �k,b, �k,r,
�k,t and �k,l, respectively (Fig. 5).

Afterwards, we generate four uniform linear B-spline curves:

ψk,bottom : [0, 1] → �k,b,

ψk,right : [0, 1] → �k,r,

ψk,top : [0, 1] → �k,t,

ψk,left : [0, 1] → �k,l.
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The control points of these B-spline curves are given by their polygonal curves. We
combine these curves to get parametrizations ψk : ∂R → ∂�k .

We want to extend ψk to the interior of �k as explained by the UNAMALLA
workgroup [1]. To that end, ψk,bottom and ψk,top must have the same number of
points and the same condition on ψk,right and ψk,left, that is,

number of points of �k,b = number of points of �k,t, (4)

number of points of �k,r = number of points of �k,l. (5)

Let mp be the number of points of �p. In order to formulate Eqs. (4) and (5) in
terms of mp we identify the sets of indexes of the polygonal sections �p in each
subregion by introducing some notation.

Let sk,b, sk,r , sk,t and sk,l be the number of polygonal sections �p in �k,b, �k,r,
�k,t and �k,l, respectively. Denote by sk the number of polygonal sections �p in
�k,b ∪ �k,r ∪ �k,t ∪ �k,l. Let

σk =

⎧
⎪⎨

⎪⎩

0, if k = 1;
k−1∑

�=1
s�, if k > 1; k = 1, . . . , n.

We define the set of indexes

Jk,b = σk + {
1, . . . , sk,b

}
,

where the sum means that σk is added to each element of the other set. Similarly,
we define

Jk,r = σk + {
sk,b + 1, . . . , sk,b + sk,r

}
,

Jk,t = σk + {
sk,b + sk,r + 1, . . . , sk,b + sk,r + sk,t

}
,

Jk,l = σk + {
sk,b + sk,r + sk,t + 1, . . . , sk

}
.

Then, Eqs. (4)–(5) are formulated as
∑

j∈Jk,b

mj − sk,b =
∑

j∈Jk,t

mj − sk,t , (6)

∑

j∈Jk,r

mj − sk,r =
∑

j∈Jk,l

mj − sk,l . (7)

We want compatible parametrizations of the boundaries. So they must have the
same points in the intersections. By construction, the intersections of the subregions
are cuts of �. Since we have n subregions, there are n − 1 cuts. Let {ci}n−1

i=1 be the
set of the decomposition cuts of �. For each cut ci we have exactly two polygonal
sections of ∪n

k=1∂�k which coincide with ci .
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Let us remember that s is the number of polygonal sections �p in ∪n
k=1∂�k. Let

γi, δi ∈ {1, . . . , s} be the indexes of two sections which coincide with ci . Then
ψ1, . . . , ψn are compatible if

mγi = mδi , i = 1, . . . , n − 1. (8)

Let q = 3n − 1. We put together Eqs. (6)–(8) as the system of linear equations

Am = b, (9)

where A ∈ Z
q×s with entries given by

a2k−1,j =
⎧
⎨

⎩

1, if j ∈ Jk,b;
−1, if j ∈ Jk,t ;
0, otherwise;

k = 1, . . . , n,

j = 1, . . . , s.

a2k,j =
⎧
⎨

⎩

1, if j ∈ Jk,r ;
−1, if j ∈ Jk,l;
0, otherwise

k = 1, . . . , n,

j = 1, . . . , s.

a2n+i,j =
⎧
⎨

⎩

1, if j = γi;
−1, if j = δi;
0, otherwise

i = 1, . . . , n − 1,
j = 1, . . . , s,

b is a vector in Zq with entries given by

b2j−1 = sj,b − sj,t , j = 1, . . . , n;
b2j = sj,r − sj,l , j = 1, . . . , n;
bj = 0, j = 2n + 1, . . . , 3n − 1,

and

m = [
m1 · · · ms

]T
.

The system of linear equations (9) is underdetermined since the matrix A has
3n − 1 rows and for each subregion there are at least four boundary curves, i.e.,
there are at least 4n variables.

The vector m can be chosen as the solution of a linear integer programming
problem:

min
{
1T m : m ∈ Z

s , Am = b
}

, (10)

where 1 is the vector of s ones. However, some entries of the optimal solution of
the problem (10) could be negative or zero.



272 P. Barrera and I. Méndez

Let �p be the length of the polygonal section �p. We choose compatible number
of points so that their sum is minimized and the boundary point distribution depends
on �p. Let �min be the length of the smallest �p. Given K ∈ N, we measure the
proportion of �p in comparison to �min by

Lp = K

⌈
�p

�min

⌉

. (11)

Since the number of boundary points in �p is mp, we distribute at least Lp

points in �p by adding the constraint mp > Lp to the problem (10). So we solve
the following integer linear programming problem:

min
{
1T m : m ∈ Z

s, Am = b,mp ≥ Lp p = 1, . . . , s
}

. (12)

By construction, b is an integer vector and A is a totally unimodular matrix, that
its, all its square submatrices have determinant 0, 1 or −1. Therefore, the integer
programming problem (12) is feasible by the Hoffmann-Kruskal theorem [14].

We get compatible mesh sizes by solving the problem (12). Other authors
use a tree structure of the region decomposition [20]. The parametrizations
ψk,bottom, ψk,right, ψk,top and ψk,left with these mesh sizes are compatible.

3.2 Parametrizations of the Subregions

Now, we extend the parametrization ψk into the interior of �k. Let Mk be the
number of points of �k,b, and let Nk be the number of points of �k,r We generate
convex structured quadrilateral meshes

Gk =
{

P
(k)
i,j ∈ �k : i = 1, . . . ,Mk, j = 1, . . . , Nk

}

such that

points of �k,b =
{

P
(k)
i,1 : i = 1, . . . ,MK

}
,

points of �k,r =
{

P
(k)
Mk,j

: j = 1, . . . , NK

}
,

points of �k,t =
{

P
(k)
i,Nk

: i = 1, . . . ,MK

}
,

points of �k,l =
{

P
(k)
1,j : j = 1, . . . , NK

}
.

The meshes Gk are automatically generated using the discrete variational ap-
proach of our UNAMALLA workgroup [3, 4, 16]. Garanzha [8] and Ivanenko [11]
generate quadrilateral meshes with boundary adaptability.
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By construction, the boundary points ofGk are the control points of the linear B-
spline curves ψk,bottom, ψk,right, ψk,top and ψk,left. Since the polygonal curves �k,b,
�k,r, �k,t and �k,l satisfy Eqs. (4) and (5), the meshes G1, . . . ,Gn are compatible
and their union is a block structured mesh G on �.

We use Gk to extend the boundary parametrization into the interior of �k

following the approach of the UNAMALLA workgroup [1]. Let B2
i,Mk

be the i-
th linear B-spline with knot sequence given by a uniform partition of [0, 1] with
Mk elements for i = 1, . . . ,Mk , and let B2

j,Nk
be the j -th linear B-spline with knot

sequence given by a uniform partition of [0, 1]with Nk elements for j = 1, . . . , Nk .
We use the parametrizations ϕk : R → �k given by the bilinear tensor product B-
spline

ϕk(ξ, η) =
Mk∑

i=1

Nk∑

j=1

P
(k)
i,j B2

i,Mk
(ξ)B2

j,Nk
(η), ξ, η ∈ [0, 1]. (13)

Let us make a few observations of these parametrizations:

• The control points of ϕk are the points of Gk .
• The map ϕk is 1-1 since all the cells of Gk are convex [1].
• By construction,

ϕk|∂�k ≡ ψk. (14)

Moreover, since ψ1, . . . , ψn are compatible, then ϕ1, . . . , ϕn are compatible.

Therefore, we have decomposed the region � into a set of admissible regions
�1, . . . , �n, and we have constructed a family of compatible and admissible
parametrizations ϕ1, . . . , ϕn for these subregions given by (13).

4 Summary and Examples

We summarize the key points of our methodology:

1. Get an admissible decomposition {�k}nk=1 of � by Algorithm 1.
2. In each �k choose four points as explained in Sect. 3.1.
3. Identify the cuts of � in each ∂�k and split ∪n

k=1∂�k into polygonal sections.
Reparametrize these sections and join them to obtain reparametrizations �k,b,
�k,r, �k,t and �k,l of the four boundary curves.

4. Solve the integer linear programming problem (12) to get compatible number of
points for �k,b, �k,r, �k,t and �k,l.

5. Generate convex structured quadrilateral meshes Gk on �k such that their
boundary points are the points of �k,b, �k,r, �k,t and �k,l.

6. Construct parametrizations ϕk using the bilinear tensor product B-spline (13).
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We generate parametrizations of four irregular polygonal regions using our
method. First, the region decomposition is interactively carried out using our
subroutines in JULIA [5] with concavity criteria tolerances τ1 = 0.1 and τ2 = 0.45.
We do not use the DUDE code. Then, a Julia interface of the COIN-OR Branch and
Cut solver [7] is used to solve the integer programming problem (12). We choose
K = 2 for the lower bound Lp given by (11). Finally, automatic mesh generation
is carried out by our UNAMALLA software [16] using a convex combination of
the weighted discrete functionals Hω and Area-Orthogonality so that mesh cells are
accumulated in the boundary of the subregions [4, 9].

The region decomposition of the four polygonal regions and their corresponding
block structured meshes are shown in Figs. 6, 7, 8, and 9. Table 1 shows the number
of points, subregions and polygonal sections �p of each region.

Fig. 6 Admissible decomposition of Titicaca and its block structured mesh
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Fig. 7 Admissible decomposition of the region Gulf and its block structured mesh
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Fig. 8 Admissible decomposition of the region Jalisco and its block structured mesh
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Fig. 9 Admissible decomposition of the region Spider [13] and its block structured mesh
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Table 1 Number of points, subregions and polygonal sections in our example regions

Region
Number of
points

Number of
subregions

Number of polygonal
sections �p

Gulf
199 17 88

Gulf of Mexico

Titicaca
365 32 161

Lake Titicaca in Peru

Jalisco
120 28 139

State of Jalisco in Mexico

Spider [13] 1388 33 150

5 Conclusions and Future Work

We have proposed a methodology to find a decomposition of an irregular polygonal
region into admissible subregions and a family of compatible bilinear B-spline
parametrizations of these subregions.

Irregular regions are interactively decomposed into admissible subregions using
concavity measures. Then, the subregion boundaries are parametrized by compati-
ble linear B-spline curves. Afterwards, these parametrizations are extended into the
interior of the subregions as compatible bilinear B-splines by automatic structured
mesh generation.

We plan to measure the quality of our meshes using the quality measures
reported by UNAMALLA [9]. Our parametrizations are compatible, but they are
not necessarily smooth between the subregions. We address this issue later.

We want to extend our method to multiply-connected plane regions. Our results
would be submitted in the part II of this paper. We thank the anonymous referees
that help us to make significant changes to improve our paper.
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