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Abstract—We present a new shape preserving method for
simplifying polygonal curves with a high level of detail and a
criteria for noise detection. The encouraging tests carried out on
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I. INTRODUCTION

In some problems of cartography and hydrology the con-
tours of water bodies and coastlines are represented by polyg-
onal curves with a high level of detail and thus require a
large number of points. The visualization and processing of
these contours may have an enormous computing demand
on Geographic Information Systems due to such data scales;
therefore shape preserving contours with fewer points are
needed to deal with these issues.

Our motivation to approximate contours arises from the
requirements of structured mesh generation: since meshing
regions with noise or a high level of detail can be com-
putationally expensive, the polygonal approximation of con-
tours is indispensable for our mesh generator [30]. Moreover,
some geospatial problems require mesh generation of complex
geometries to carry out numerical simulations, and in that
regard the faithful polygonal approximations of contours can
drastically reduce the computational resources of meshing,
and consequently the overall simulation without sacrificing
robustness.

Collinearity criteria [21] and detection of dominant points
[26], [27] were used in our mesh generation [29] to simplify
contours. However, these methods may not preserve the shape
of contours with the needed level of detail. In contrast,
cartographers use line simplification methods like the Douglas-
Peuker algorithm [10] and Visvalingam-Whyatt algorithm [32]
for the interactive visualization of high resolution maps [5].

In other areas, such as computer vision and pattern recog-
nition, digital curves with noise are extracted from images
due to integer point segmentation preprocessing. Nevertheless,
geospatial applications require smooth curves that preserve
the initial shape. In that regard, the above line simplification
methods are inadequate. Instead, the use of filters, splines [25],
[28] or noise estimators [20] can generate shape preserving
contours where such a digital curve can be smoothed over the
same number of points, and then subsequently simplified.

In this paper we use a method for the polygonal approx-
imation of contours with noise or that require a high level
of detail. This method consists of three stages: elimination of
collinear points, contour smoothing, and line simplification.

There are different algorithms in the literature for noise
detection [20], curve smoothing [18] and line simplification
[10], [33], so we highlight our main contributions: the triangle
areas decay method is used for noise detection, and the radius
method is introduced for line simplification. We also provide
an implementation of our method as a free Julia software
package called EditBoundary.jl.

The present paper is organized as follows:
§II Explanation of our line simplification method.

§III Noise detection and reduction.
§IV Description of the main pipeline.
§V Case study on two data sets

§VI Conclusions and future work.
The description of the Julia package EditBoundary.jl is pre-
sented in the appendix.

II. CONTOUR SIMPLIFICATION

In this paper we examine contours given by vertex se-
quences P = (v1, . . . , vn) joined by the line segments
v1v2, . . . , vn−1vn - these contours are known as polygonal
chains. We only use anti-clockwise oriented polygonal chains
without repeated vertices or crosses between the line segments,
except for the case vn = v1 corresponding to simple polygons.

Our approximation of a polygonal chain P consists in
finding another polygonal chain P ′ with fewer vertices so that
it preserves the shape of P in the sense that P ′ still retains
some of the main features of P by visual inspection. This
means that P ′ has some dominant points of P , where the error
measure is minimized or the error is bounded by a threshold.

The error measure should be a scale independent measure,
where if the polygonal chains are simple polygons, we can
use the relative error of the areas enclosed by P and P ′ as
our intended metric.

When we simplify a contour, points are removed so that
we get a shape preserving contour with the least number of
vertices. This can be formulated as follows:

Min-# Problem [14]: Given a polygonal chain P and a
threshold ϵ > 0, find a polygonal chain P ′ from P with the
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Fig. 1: Closed polygonal chain v1, . . . , vn. We highlight the triangle
vi−1vivi+1, its inradius ri, circumradius Ri, and interior angle θi.

least number of vertices so that that the error measure between
P and P ′ is bounded by ϵ.

Viewed as an optimization problem, line simplification may
have significant computational drawbacks [12], thus a non-
starter for our interactive software given the number of points
to consider.

Another idea is to examine the triangles Ti = vi−1vivj−1

generated by three consecutive vertices in order to leverage
their geometrical properties such as area, angles, inradius, and
circumradius as a modification criteria, see Fig. 1.

A. Area method
This method is a modification of the Visvalingam-Whyatt

algorithm [32], [33]. The vertices are sequentially removed
from the polygonal chain P based on the areas ai of the
triangles Ti. In order to get a scale independent method, the
areas are divided by the average area of the triangles, denoted
by a.

Given a threshold ϵ > 0, in each step we only remove
the vertex vj corresponding to smallest area triangle Tj if its
scaled area is bounded by the threshold, that is, if

aj ≤ a · ϵ. (1)

The triangle areas can be weighted by the interior angles
θj as described by [33] in order to get more control over the
removed vertices, and in our experiments we pragmatically
use aj sin θj .

B. Radius method
In addition to the triangle areas, we measure the radius

of the inscribed circles and circumcircles of the triangles to
simplify the contours. Critically, the triangle area is bounded
by the product of these radii and said bound is justified by
Blundon’s inequality [9], [35], namely, for every triangle with
inradius r, circumradius R and perimeter p, the following
inequality holds:

p

2
≤ 2R+ (3

√
3− 4)r, (2)

Fig. 2: In a triangle with obtuse angle θ, inradius r, and circumradius
R, we compare the triangle’s area a with 2Rr and 2Rr sin θ.

additionally, the equality holds in (2) for equilateral triangles.
Moreover, if the triangle does not have obtuse angles, then the
following inequality holds:

2R+ r ≤ p

2
. (3)

In this case, the equality holds in (3) for right triangles.
Since the area a, the perimeter p, and the inradius r of a

triangle are related by the identity

a = r · p
2
, (4)

then from inequality (2) we get the following upper bound for
the area:

a < r · (2R+ 1.2r), (5)

and where, from the inequality (3), we also get the following
lower bound for the area:

r · (2R+ r) ≤ a. (6)

If the triangle does not have obtuse angles and r2 ≈ 0,
then both bounds (5)-(6) indicate that the triangle area is
approximately twice the product of the inradius and the
circumradius:

a ≈ 2Rr. (7)

We have noted that several of the triangles in our test contours
have small inradius, but unfortunately, they also tend to have
obtuse angles, therefore the approximation (7) may not be
suitable. In order to compensate for this observation, the
product of the radii is weighted by the sine of the obtuse
angle as shown in Fig. 2. We then use the following formula:

a ≈ 2Rr sin θ. (8)

It is worthy to note that the double product of the inradius r
and the circumradius R can be computed from the sizes ℓ1, ℓ2
and ℓ3 of a triangle as follows [15]:

2Rr =
ℓ1ℓ2ℓ3

ℓ1 + ℓ2 + ℓ3
. (9)
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In the same manner as the area method, the polygonal chain
P is sequentially simplified based on the weighted product of
the radii. Let ri be the inradius of the triangle Ti, let be Ri the
circumradius of Ti, and let sin vi be the sine of the interior
angle at vi. The weighted products of the radii 2Riri sin vi
are divided by their average, denoted by ρ, so that we get a
scale independent error measure.

Given a threshold ϵ > 0, in each step we only remove the
vertex vj corresponding to the smallest weighted product of
the radii if this quantity is bounded by the threshold, that is,
if

2Rjrj sin vj ≤ ρ · ϵ (10)

Note that in each step it is enough to recompute the products
of the radii for the smallest triangle and their two adjacent
triangles.

In order to compare the area method against the radius
method, the triangle areas are weighted by the sines of the
interior angles. More points can be removed as we increase
the threshold value, but the simplified contour may lose several
details of the original contour.

III. CONTOUR SMOOTHING

We can think of digital curves from image processing and
pattern recognition applications as closed polygonal chains
with integer coordinates, where some of these curves can
have noise. In order to approximate these digital curves by
smoothed polygonal chains, we must address noise detection
and reduction.

A. Noise detection

If we know that a given polygonal chain has noise, then the
contour approximation can be improved by applying a noise
reduction algorithm before the contour simplification, which
leaves the question of how to detect noise. To that end we
propose to examine the triangles formed by three consecutive
vertices and the decay distribution of said triangle areas.

Let P be a polygonal chain of n vertices without collinear
vertices, and let {ai} be the sequence of the corresponding
triangle areas, then the areas are scaled by their largest value
as follows:

αi =
ai

maxi ai
, i = 1, . . . , n (11)

Next, these areas are sorted in decreasing order by a permuta-
tion σ of the set {1, . . . , n}. We examine the plot of the sorted
triangle areas against their indexes in a logarithmic scale:(

i, log10 ασ(i)

)
, i = 1, . . . , n. (12)

We name the plot (12) as the area plot. Our experiments
suggest that the area plot for noisy polygonal chains has a
staircase shape with some considerable gaps instead of the
gradual decay we expect from polygonal chains without noise
as shown in Fig. 3(a).

(a) Area plots for both the smoothed contour and the noisy contour of ray10.

(b) Comparison of the blue colored noisy contour against the green colored
smoothed contour generated by (15) using the same number of points.

(c) Zoom at the tail of ray10: the blue colored contour has noise, while its
approximation is the green colored contour.

Fig. 3: Noise detection and reduction for the digital curve ray10.
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B. Noise reduction

Once a contour with noise is detected by visually inspecting
the area plot, we apply noise reduction. In that regard, both
the area and radius methods may be unsuitable for this task
since the simplified contour may have unwanted noise or may
not preserve the initial shape.

In order to generate shape preserving contours with the least
possible noise, we use the idea of [18], which consists of mov-
ing the vertices so that the sharp borders are “straightened”.
More precisely, it generates the minimum length contour with
the same number of points around the initial contour.

Given a polygonal chain P = (v1, . . . , vn) of length ℓ, and
a threshold δ > 0, we denote by N(P, δ) the set of polygonal
chains P ′ = (u1, . . . , un) such that:

∥vi − ui∥∞ ≤ δ · ℓ, i = 1, . . . , n, (13)

where
∥(x, y)∥∞ = max(|x|, |y|). (14)

The noise reduction problem is formulated in [27] as finding
the minimum length polygonal chain in N(P, δ):

Pmin = argmin{length(P ′) : P ′ ∈ N(P, δ)}. (15)

The smoothing problem (15) is an non-linear optimization
problem with box constraints, where the unknown variables
are the coordinates of the vertices. It has a unique solution if
the balls centered at vi with radius δℓ are disjoint sets [27].
Optimization algorithms such LBFGS-B [6] can be used in
order to solve this problem.

A band around P is given by the inequality (13), and since
its width depends on the length ℓ, the smoothing method is
scale independent and also depends on the threshold δ to
control the smoothing level. As the value of the threshold δ
increases, the noise level decreases, but, we have noted in our
experiments that if δ > 10−2, the smoothed contour may not
preserve the initial shape.

We exemplify the above noise detection and reduction by
smoothing the contour ray10 with 1618 points from [19]. First,
827 collinear points are deleted by the radius method, then
we show the area plot in Fig. 3(a). Since the area plot has a
staircase shape, we generate the minimum length polygonal
chain (15) using δ = 10−3 for noise reduction. The staircase
shape comes from the consecutive triangles taking collinear
integer coordinates due to image segmentation preprocessing
algorithms that digital imaging relies on; a large number
of triangles will likely occupy a small number of distinct
coordinate distance combinations, thus many will share the
same area. A comparison of the contour without collinear
points against the smoothed contour is shown in Figs. 3(b)-(c),
both contours have 791 points.

IV. MAIN PIPELINE

Based on the previous discussion, we describe our method
for approximation of polygonal chains:

1) Remove collinear points using the radius method (10)
2) Use the area plot (12) for noise detection.

3) If the polygonal chain has noise, smooth it by generating
the minimum length polygonal chain (15).

4) Simplify the contour using the radius method (10).
We recommend choosing the smoothing threshold δ so

that the area plot (12) decays gradually and selecting the
simplification threshold ϵ so that the area score (16) is smaller
than 1. In that regard, we have found experimentally suitable
value ranges for the thresholds: 10−5 ≤ δ ≤ 10−3 and
0.1 ≤ ϵ ≤ 100. Moreover, the radius method with threshold
ϵ = 0.1 can remove collinear points and preserve the initial
shape.

Since the double product of the inradius and the circumra-
dius approximates the area of a triangle, both the radius and
area methods can use the same value ranges for the threshold
to get approximately the same level of simplification. So, the
radius method can be replaced by the area method in the above
procedure.

In order to know that we have a shape preserving approx-
imation, the area of the simplified polygon P ′ is compared
with respect to the area of the initial polygon P using the
following area score:

α(P ) = 103 × |area(P )− area(P ′)|
area(P )

. (16)

In our experiments we have considered at least three significant
digits for the accuracy of the area score, so we scale the
relative error in the areas by the factor 103.

As we increase the threshold of the line simplification, the
area score also increases, albeit this score is not a monotonous
function. Plots of the area score in terms of this threshold are
shown in Figs. 4 and 8.

In our examples we have observed that if the simplification
threshold is smaller than one, then the area score can also be
smaller than one. Moreover, our simplified contours still pre-
serve the initial shape if their area scores are smaller than one.
With this in mind, we can identify shape preserving contours
by their area scores. Contours with noise and digital curves are
first smoothed before the line simplification procedure, so we
measure the area score of the simplified contour with respect
to the smoothed contour.

V. EXPERIMENTS

We consider two types of polygonal contours to showcase
our method, namely the Mexican water bodies data base of
AmeriGeo [1] and the digital curves of MPEG7CS [19] and
Polyseg [22]. These contours are approximated depending of
the noise level and the level of detail.

A. Mexican water bodies contours

The Mexican water bodies of the data base [1] do not have
noise but some of them have a high level of detail, such as the
case of the La Amistad water dam, located in the Mexican state
of Coahuila. This contour has 10445 points, see Fig. 5. First,
the contour is simplified using the radius method with ϵ = 10.
In Fig. 6, we compare the simplified contour with respect to
the initial shape. The simplified contour preserves the shape
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TABLE I: Line simplification of the dam La Amistad (10445 points)

Radius Method
Threshold Simplification Area Score

0.1 61 % 0.072
1 83 % 0.687

10 93 % 0.822
Area Method

Threshold Simplification Area Score
0.1 73 % 0.334

1 86 % 2.191
10 93 % 5.809

Fig. 4: Log-scale plot of the area score for the La Amistad water dam
using the Radius Method.

Fig. 5: Line simplification of 93% for the La Amistad water dam using
the radius method with threshold ϵ = 10. The simplified contour is
red colored.

Fig. 6: Zoom of the La Amistad water dam. The red contour is the line
simplification of 93% using the area method with threshold ϵ = 10.

Fig. 7: Line simplification of 87% for the Falcon water dam using
the radius method with threshold ϵ = 1. The simplified contour is
colored red.

Fig. 8: Log-scale plot of the area score for the Falcon water dam.
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TABLE II: Line simplification of the dam Falcon (12565 points)

Radius Method
Threshold Simplification Area Score

0.5 83 % 0.063
5 93 % 0.469

50 98 % 11.390
Area Method

Threshold Simplification Area Score
0.5 86 % 0.241

5 93 % 0.707
50 98 % 4.619

(a) The initial blue colored noisy contour compared against our red colored
approximation.

(b) Zoom at flower showing both the blue colored noisy contour and its red
colored approximation.

Fig. 9: Approximation of the noisy contour flower using our method.

visually and its area score is 0.822. The plot of its area score in
terms of the threshold ϵ is shown in Fig. 4. Note that the area
score is larger than one for threshold values larger than one. In
addition, we also simplify the contour using the area method
with the same threshold value and the simplified contour is
depicted in Fig. 6. Additionally, in Table I we compare our
line simplification methods by their area score and level of
simplification measured as the percentage of points deleted.

Another example we find noteworthy is the line simplifica-
tion of the Falcon water dam, located between the U.S. state
of Texas and the Mexican state of Tamaulipas. In Fig. 7 we
show the Mexican side of the dam and its simplified contour
by the radius method with threshold ϵ = 1. The simplified
contour preserves the initial shape visually and its area score
is 0.01. The plot of its area score in terms of the threshold ϵ
is shown in Fig. 8. Note that the area score is larger than one
for thresholds values larger than 10. In Table II we compare
our line simplification methods by their level of simplification
and area score.

B. Image segmentation contours

Now, we consider the contour flower of 5788 points from
the data base Polyseg [22]. This contour has holes, noise, and
collinear points. First we remove 1389 collinear points, then
we smooth the contour using (15) with factor δ = 5 × 10−4.
Afterwards, we simplify it using the radius method with
threshold ϵ = 10. The smoothed and simplified contour of
1045 points is shown in Fig. 9 together with the initial shape.

Interactive and high resolution visualizations of the above
examples and more can be found in our website [30].

VI. CONCLUSIONS AND FUTURE WORK

We have described a robust method for the approximation of
polygonal contours where the area plot is used for noise detec-
tion. Our radius method simplifies the contour, and the shape
preserving approximations have small area scores. Moreover,
we provide EditBoundary.jl, a Julia software package, for
reproducing our results. The tests conducted by this open
source software bolster our claims that the proposed method
can be applied to contours with different levels of noise and
detail.

Our method can be extended to polygons with holes as
shown in Fig. 10 by applying it to each hole separately. Later,
we plan to approximate the contours of polygon decomposition
using our method. A particular challenge is preserving inter-
secting lines in the point elimination procedure. Identifying
and fixing crossings and the automatic selection of threshold
values are issues we still need to incorporate into the method.
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Approximation of Laguna Tamiahua

Edit Boundary Menu

Fig. 10: Screenshot of the main menu of EditBundary.jl together with a window to simplify the contour Laguna de Tamiahua of [1].

APPENDIX

EditBoundary.jl is our open source module for polygonal
approximation of contours implemented in the Julia program-
ming language [4]. It has a collection of routines for interactive
line simplification, curve smoothing, and contour edition based
on our methodology, see Fig. 10. This module is part of our
mesh generator [30], but it can be used independently of the
meshing software. The source code and test contours can be
found in [30], and read-made demo version is provided at [11].

The version of [30] uses the Julia packages [8], [16] for
interactive graphics and is executed inside a Jupyter notebook
[13] running a Julia kernel. Users can create their polygonal
contours and inspect the area plot, but only XYZ files are
supported for input and output in the demo version of the
code. Future versions will handle more standard geospatial
formats like .geojson and .shp.
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